Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

From Supervised to Generative: A Novel Paradigm for Tabular Deep Learning with Large Language Models (2310.07338v4)

Published 11 Oct 2023 in cs.LG

Abstract: Tabular data is foundational to predictive modeling in various crucial industries, including healthcare, finance, retail, sustainability, etc. Despite the progress made in specialized models, there is an increasing demand for universal models that can transfer knowledge, generalize from limited data, and follow human instructions. These are challenges that current tabular deep learning approaches have not fully tackled. Here we introduce Generative Tabular Learning (GTL), a novel framework that integrates the advanced functionalities of LLMs-such as prompt-based zero-shot generalization and in-context learning-into tabular deep learning. GTL capitalizes on the pre-training of LLMs on diverse tabular data, enhancing their understanding of domain-specific knowledge, numerical sequences, and statistical dependencies critical for accurate predictions. Our empirical study spans 384 public datasets, rigorously analyzing GTL's convergence and scaling behaviors and assessing the impact of varied data templates. The GTL-enhanced LLaMA-2 model demonstrates superior zero-shot and in-context learning capabilities across numerous classification and regression tasks. Notably, it achieves this without fine-tuning, outperforming traditional methods and rivaling state-of-the-art models like GPT-4 in certain cases. Through GTL, we not only foster a deeper integration of LLMs' sophisticated abilities into tabular data comprehension and application but also offer a new training resource and a test bed for LLMs to enhance their ability to comprehend tabular data. To facilitate reproducible research, we release our code, data, and model checkpoints at https://github.com/microsoft/Industrial-Foundation-Models.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 1 like.

Upgrade to Pro to view all of the tweets about this paper:

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube