Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving mitosis detection on histopathology images using large vision-language models (2310.07176v1)

Published 11 Oct 2023 in cs.CV

Abstract: In certain types of cancerous tissue, mitotic count has been shown to be associated with tumor proliferation, poor prognosis, and therapeutic resistance. Due to the high inter-rater variability of mitotic counting by pathologists, convolutional neural networks (CNNs) have been employed to reduce the subjectivity of mitosis detection in hematoxylin and eosin (H&E)-stained whole slide images. However, most existing models have performance that lags behind expert panel review and only incorporate visual information. In this work, we demonstrate that pre-trained large-scale vision-LLMs that leverage both visual features and natural language improve mitosis detection accuracy. We formulate the mitosis detection task as an image captioning task and a visual question answering (VQA) task by including metadata such as tumor and scanner types as context. The effectiveness of our pipeline is demonstrated via comparison with various baseline models using 9,501 mitotic figures and 11,051 hard negatives (non-mitotic figures that are difficult to characterize) from the publicly available Mitosis Domain Generalization Challenge (MIDOG22) dataset.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. C. W. Elston and I. O. Ellis, “Pathological prognostic factors in breast cancer. i. the value of histological grade in breast cancer: experience from a large study with long-term follow-up,” Histopathology, vol. 19, no. 5, pp. 403–410, 1991.
  2. A. L. Moreira, P. S. Ocampo, Y. Xia, H. Zhong, P. A. Russell, Y. Minami, W. A. Cooper, A. Yoshida, L. Bubendorf, M. Papotti, et al., “A grading system for invasive pulmonary adenocarcinoma: a proposal from the international association for the study of lung cancer pathology committee,” Journal of Thoracic Oncology, vol. 15, no. 10, pp. 1599–1610, 2020.
  3. D. G. Sledge, J. Webster, and M. Kiupel, “Canine cutaneous mast cell tumors: A combined clinical and pathologic approach to diagnosis, prognosis, and treatment selection,” The Veterinary Journal, vol. 215, pp. 43–54, 2016.
  4. B.-R. Wei, C. H. Halsey, S. B. Hoover, M. Puri, H. H. Yang, B. D. Gallas, M. P. Lee, W. Chen, A. C. Durham, J. E. Dwyer, et al., “Agreement in histological assessment of mitotic activity between microscopy and digital whole slide images informs conversion for clinical diagnosis,” Academic pathology, vol. 6, p. 2374289519859841, 2019.
  5. C. A. Bertram, M. Aubreville, T. A. Donovan, A. Bartel, F. Wilm, C. Marzahl, C.-A. Assenmacher, K. Becker, M. Bennett, S. Corner, et al., “Computer-assisted mitotic count using a deep learning–based algorithm improves interobserver reproducibility and accuracy,” Veterinary pathology, vol. 59, no. 2, pp. 211–226, 2022.
  6. Z. Ji, P. Rosenfield, C. Eng, S. Bettigole, D. C. Gibson, H. Masoudi, M. Hanna, N. Fusi, and K. A. Severson, “Considerations for data acquisition and modeling strategies: Mitosis detection in computational pathology,” in Medical Imaging with Deep Learning, 2023.
  7. M. Aubreville, N. Stathonikos, C. A. Bertram, R. Klopfleisch, N. Ter Hoeve, F. Ciompi, F. Wilm, C. Marzahl, T. A. Donovan, A. Maier, et al., “Mitosis domain generalization in histopathology images—the midog challenge,” Medical Image Analysis, vol. 84, p. 102699, 2023.
  8. S. Çayır, G. Solmaz, H. Kusetogullari, F. Tokat, E. Bozaba, S. Karakaya, L. O. Iheme, E. Tekin, Ç. Yazıcı, G. Özsoy, et al., “Mitnet: a novel dataset and a two-stage deep learning approach for mitosis recognition in whole slide images of breast cancer tissue,” Neural Computing and Applications, vol. 34, no. 20, pp. 17837–17851, 2022.
  9. A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, et al., “Learning transferable visual models from natural language supervision,” in International conference on machine learning, pp. 8748–8763, PMLR, 2021.
  10. Z. Huang, F. Bianchi, M. Yuksekgonul, T. Montine, and J. Zou, “Leveraging medical twitter to build a visual–language foundation model for pathology ai,” bioRxiv, pp. 2023–03, 2023.
  11. S. Zhang, Y. Xu, N. Usuyama, J. Bagga, R. Tinn, S. Preston, R. Rao, M. Wei, N. Valluri, C. Wong, et al., “Large-scale domain-specific pretraining for biomedical vision-language processing,” arXiv preprint arXiv:2303.00915, 2023.
  12. M. Y. Lu, B. Chen, D. F. Williamson, R. J. Chen, I. Liang, T. Ding, G. Jaume, I. Odintsov, A. Zhang, L. P. Le, et al., “Towards a visual-language foundation model for computational pathology,” arXiv preprint arXiv:2307.12914, 2023.
  13. J. Li, D. Li, C. Xiong, and S. Hoi, “Blip: Bootstrapping language-image pre-training for unified vision-language understanding and generation,” in International Conference on Machine Learning, pp. 12888–12900, PMLR, 2022.
  14. N. A. Koohbanani, B. Unnikrishnan, S. A. Khurram, P. Krishnaswamy, and N. Rajpoot, “Self-path: Self-supervision for classification of pathology images with limited annotations,” IEEE Transactions on Medical Imaging, vol. 40, no. 10, pp. 2845–2856, 2021.
  15. X. Chen and K. He, “Exploring simple siamese representation learning,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 15750–15758, 2021.
  16. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.
  17. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.
Citations (3)

Summary

We haven't generated a summary for this paper yet.