Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Adversarial optimization leads to over-optimistic security-constrained dispatch, but sampling can help (2310.06956v1)

Published 10 Oct 2023 in eess.SY and cs.SY

Abstract: To ensure safe, reliable operation of the electrical grid, we must be able to predict and mitigate likely failures. This need motivates the classic security-constrained AC optimal power flow (SCOPF) problem. SCOPF is commonly solved using adversarial optimization, where the dispatcher and an adversary take turns optimizing a robust dispatch and adversarial attack, respectively. We show that adversarial optimization is liable to severely overestimate the robustness of the optimized dispatch (when the adversary encounters a local minimum), leading the operator to falsely believe that their dispatch is secure. To prevent this overconfidence, we develop a novel adversarial sampling approach that prioritizes diversity in the predicted attacks. We find that our method not only substantially improves the robustness of the optimized dispatch but also avoids overconfidence, accurately characterizing the likelihood of voltage collapse under a given threat model. We demonstrate a proof-of-concept on small-scale transmission systems with 14 and 57 nodes.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube