Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distillation Improves Visual Place Recognition for Low Quality Images (2310.06906v3)

Published 10 Oct 2023 in cs.CV

Abstract: Real-time visual localization often utilizes online computing, for which query images or videos are transmitted to remote servers for visual place recognition (VPR). However, limited network bandwidth necessitates image-quality reduction and thus the degradation of global image descriptors, reducing VPR accuracy. We address this issue at the descriptor extraction level with a knowledge-distillation methodology that learns feature representations from high-quality images to extract more discriminative descriptors from low-quality images. Our approach includes the Inter-channel Correlation Knowledge Distillation (ICKD) loss, Mean Squared Error (MSE) loss, and Triplet loss. We validate the proposed losses on multiple VPR methods and datasets subjected to JPEG compression, resolution reduction, and video quantization. We obtain significant improvements in VPR recall rates under all three tested modalities of lowered image quality. Furthermore, we fill a gap in VPR literature on video-based data and its influence on VPR performance. This work contributes to more reliable place recognition in resource-constrained environments.

Summary

We haven't generated a summary for this paper yet.