Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

DeepCrysTet: A Deep Learning Approach Using Tetrahedral Mesh for Predicting Properties of Crystalline Materials (2310.06852v1)

Published 7 Sep 2023 in cond-mat.mtrl-sci and cs.LG

Abstract: Machine learning (ML) is becoming increasingly popular for predicting material properties to accelerate materials discovery. Because material properties are strongly affected by its crystal structure, a key issue is converting the crystal structure into the features for input to the ML model. Currently, the most common method is to convert the crystal structure into a graph and predicting its properties using a graph neural network (GNN). Some GNN models, such as crystal graph convolutional neural network (CGCNN) and atomistic line graph neural network (ALIGNN), have achieved highly accurate predictions of material properties. Despite these successes, using a graph to represent a crystal structure has the notable limitation of losing the crystal structure's three-dimensional (3D) information. In this work, we propose DeepCrysTet, a novel deep learning approach for predicting material properties, which uses crystal structures represented as a 3D tetrahedral mesh generated by Delaunay tetrahedralization. DeepCrysTet provides a useful framework that includes a 3D mesh generation method, mesh-based feature design, and neural network design. The experimental results using the Materials Project dataset show that DeepCrysTet significantly outperforms existing GNN models in classifying crystal structures and achieves state-of-the-art performance in predicting elastic properties.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube