Machine Learning Quantum Systems with Magnetic p-bits (2310.06679v1)
Abstract: The slowing down of Moore's Law has led to a crisis as the computing workloads of AI algorithms continue skyrocketing. There is an urgent need for scalable and energy-efficient hardware catering to the unique requirements of AI algorithms and applications. In this environment, probabilistic computing with p-bits emerged as a scalable, domain-specific, and energy-efficient computing paradigm, particularly useful for probabilistic applications and algorithms. In particular, spintronic devices such as stochastic magnetic tunnel junctions (sMTJ) show great promise in designing integrated p-computers. Here, we examine how a scalable probabilistic computer with such magnetic p-bits can be useful for an emerging field combining machine learning and quantum physics.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.