Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Detecting and Learning Out-of-Distribution Data in the Open world: Algorithm and Theory (2310.06221v1)

Published 10 Oct 2023 in cs.LG

Abstract: This thesis makes considerable contributions to the realm of machine learning, specifically in the context of open-world scenarios where systems face previously unseen data and contexts. Traditional machine learning models are usually trained and tested within a fixed and known set of classes, a condition known as the closed-world setting. While this assumption works in controlled environments, it falls short in real-world applications where new classes or categories of data can emerge dynamically and unexpectedly. To address this, our research investigates two intertwined steps essential for open-world machine learning: Out-of-distribution (OOD) Detection and Open-world Representation Learning (ORL). OOD detection focuses on identifying instances from unknown classes that fall outside the model's training distribution. This process reduces the risk of making overly confident, erroneous predictions about unfamiliar inputs. Moving beyond OOD detection, ORL extends the capabilities of the model to not only detect unknown instances but also learn from and incorporate knowledge about these new classes. By delving into these research problems of open-world learning, this thesis contributes both algorithmic solutions and theoretical foundations, which pave the way for building machine learning models that are not only performant but also reliable in the face of the evolving complexities of the real world.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)