Human-Robot Gym: Benchmarking Reinforcement Learning in Human-Robot Collaboration (2310.06208v2)
Abstract: Deep reinforcement learning (RL) has shown promising results in robot motion planning with first attempts in human-robot collaboration (HRC). However, a fair comparison of RL approaches in HRC under the constraint of guaranteed safety is yet to be made. We, therefore, present human-robot gym, a benchmark suite for safe RL in HRC. Our benchmark suite provides eight challenging, realistic HRC tasks in a modular simulation framework. Most importantly, human-robot gym includes a safety shield that provably guarantees human safety. We are, thereby, the first to provide a benchmark suite to train RL agents that adhere to the safety specifications of real-world HRC. This bridges a critical gap between theoretic RL research and its real-world deployment. Our evaluation of six tasks led to three key results: (a) the diverse nature of the tasks offered by human-robot gym creates a challenging benchmark for state-of-the-art RL methods, (b) incorporating expert knowledge in RL training in the form of an action-based reward can outperform the expert, and (c) our agents negligibly overfit to training data.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.