Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 127 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Enabling Intelligent Vehicular Networks Through Distributed Learning in the Non-Terrestrial Networks 6G Vision (2310.05899v1)

Published 7 Sep 2023 in cs.NI, cs.AI, and cs.DC

Abstract: The forthcoming 6G-enabled Intelligent Transportation System (ITS) is set to redefine conventional transportation networks with advanced intelligent services and applications. These technologies, including edge computing, Machine Learning (ML), and network softwarization, pose stringent requirements for latency, energy efficiency, and user data security. Distributed Learning (DL), such as Federated Learning (FL), is essential to meet these demands by distributing the learning process at the network edge. However, traditional FL approaches often require substantial resources for satisfactory learning performance. In contrast, Transfer Learning (TL) and Split Learning (SL) have shown effectiveness in enhancing learning efficiency in resource-constrained wireless scenarios like ITS. Non-terrestrial Networks (NTNs) have recently acquired a central place in the 6G vision, especially for boosting the coverage, capacity, and resilience of traditional terrestrial facilities. Air-based NTN layers, such as High Altitude Platforms (HAPs), can have added advantages in terms of reduced transmission distances and flexible deployments and thus can be exploited to enable intelligent solutions for latency-critical vehicular scenarios. With this motivation, in this work, we introduce the concept of Federated Split Transfer Learning (FSTL) in joint air-ground networks for resource-constrained vehicular scenarios. Simulations carried out in vehicular scenarios validate the efficacy of FSTL on HAPs in NTN, demonstrating significant improvements in addressing the demands of ITS applications.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.