Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Combining recurrent and residual learning for deforestation monitoring using multitemporal SAR images (2310.05697v1)

Published 9 Oct 2023 in cs.CV and cs.LG

Abstract: With its vast expanse, exceeding that of Western Europe by twice, the Amazon rainforest stands as the largest forest of the Earth, holding immense importance in global climate regulation. Yet, deforestation detection from remote sensing data in this region poses a critical challenge, often hindered by the persistent cloud cover that obscures optical satellite data for much of the year. Addressing this need, this paper proposes three deep-learning models tailored for deforestation monitoring, utilizing SAR (Synthetic Aperture Radar) multitemporal data moved by its independence on atmospheric conditions. Specifically, the study proposes three novel recurrent fully convolutional network architectures-namely, RRCNN-1, RRCNN-2, and RRCNN-3, crafted to enhance the accuracy of deforestation detection. Additionally, this research explores replacing a bitemporal with multitemporal SAR sequences, motivated by the hypothesis that deforestation signs quickly fade in SAR images over time. A comprehensive assessment of the proposed approaches was conducted using a Sentinel-1 multitemporal sequence from a sample site in the Brazilian rainforest. The experimental analysis confirmed that analyzing a sequence of SAR images over an observation period can reveal deforestation spots undetectable in a pair of images. Notably, experimental results underscored the superiority of the multitemporal approach, yielding approximately a five percent enhancement in F1-Score across all tested network architectures. Particularly the RRCNN-1 achieved the highest accuracy and also boasted half the processing time of its closest counterpart.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.