Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The potential of large language models for improving probability learning: A study on ChatGPT3.5 and first-year computer engineering students (2310.05686v1)

Published 9 Oct 2023 in cs.CL and cs.AI

Abstract: In this paper, we assess the efficacy of ChatGPT (version Feb 2023), a large-scale LLM, in solving probability problems typically presented in introductory computer engineering exams. Our study comprised a set of 23 probability exercises administered to students at Rey Juan Carlos University (URJC) in Madrid. The responses produced by ChatGPT were evaluated by a group of five statistics professors, who assessed them qualitatively and assigned grades based on the same criteria used for students. Our results indicate that ChatGPT surpasses the average student in terms of phrasing, organization, and logical reasoning. The model's performance remained consistent for both the Spanish and English versions of the exercises. However, ChatGPT encountered difficulties in executing basic numerical operations. Our experiments demonstrate that requesting ChatGPT to provide the solution in the form of an R script proved to be an effective approach for overcoming these limitations. In summary, our results indicate that ChatGPT surpasses the average student in solving probability problems commonly presented in introductory computer engineering exams. Nonetheless, the model exhibits limitations in reasoning around certain probability concepts. The model's ability to deliver high-quality explanations and illustrate solutions in any programming language, coupled with its performance in solving probability exercises, suggests that LLMs have the potential to serve as learning assistants.

Citations (1)

Summary

We haven't generated a summary for this paper yet.