Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Approximation of the invariant measure for stable SDE by the Euler-Maruyama scheme with decreasing step-sizes (2310.05390v1)

Published 9 Oct 2023 in math.PR, cs.NA, math.DS, and math.NA

Abstract: Let $(X_t){t \ge 0}$ be the solution of the stochastic differential equation $$dX_t = b(X_t) dt+A dZ_t, \quad X{0}=x,$$ where $b: \mathbb{R}d \rightarrow \mathbb Rd$ is a Lipschitz function, $A \in \mathbb R{d \times d}$ is a positive definite matrix, $(Z_t){t\geq 0}$ is a $d$-dimensional rotationally invariant $\alpha$-stable L\'evy process with $\alpha \in (1,2)$ and $x\in\mathbb{R}{d}$. We use two Euler-Maruyama schemes with decreasing step sizes $\Gamma = (\gamma_n){n\in \mathbb{N}}$ to approximate the invariant measure of $(X_t)_{t \ge 0}$: one with i.i.d. $\alpha$-stable distributed random variables as its innovations and the other with i.i.d. Pareto distributed random variables as its innovations. We study the convergence rate of these two approximation schemes in the Wasserstein-1 distance. For the first scheme, when the function $b$ is Lipschitz and satisfies a certain dissipation condition, we show that the convergence rate is $\gamma{1/\alpha}_n$. Under an additional assumption on the second order directional derivatives of $b$, this convergence rate can be improved to $\gamma{1+\frac 1 {\alpha}-\frac{1}{\kappa}}_n$ for any $\kappa \in [1,\alpha)$. For the second scheme, when the function $b$ is twice continuously differentiable, we obtain a convergence rate of $\gamma{\frac{2-\alpha}{\alpha}}_n$. We show that the rate $\gamma{\frac{2-\alpha}{\alpha}}_n$ is optimal for the one dimensional stable Ornstein-Uhlenbeck process. Our theorems indicate that the recent remarkable result about the unadjusted Langevin algorithm with additive innovations can be extended to the SDEs driven by an $\alpha$-stable L\'evy process and the corresponding convergence rate has a similar behaviour. Compared with the previous result, we have relaxed the second order differentiability condition to the Lipschitz condition for the first scheme.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube