Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Accelerating Deep Neural Network guided MCTS using Adaptive Parallelism (2310.05313v1)

Published 9 Oct 2023 in cs.PF and cs.DC

Abstract: Deep Neural Network guided Monte-Carlo Tree Search (DNN-MCTS) is a powerful class of AI algorithms. In DNN-MCTS, a Deep Neural Network model is trained collaboratively with a dynamic Monte-Carlo search tree to guide the agent towards actions that yields the highest returns. While the DNN operations are highly parallelizable, the search tree operations involved in MCTS are sequential and often become the system bottleneck. Existing MCTS parallel schemes on shared-memory multi-core CPU platforms either exploit data parallelism but sacrifice memory access latency, or take advantage of local cache for low-latency memory accesses but constrain the tree search to a single thread. In this work, we analyze the tradeoff of these parallel schemes and develop performance models for both parallel schemes based on the application and hardware parameters. We propose a novel implementation that addresses the tradeoff by adaptively choosing the optimal parallel scheme for the MCTS component on the CPU. Furthermore, we propose an efficient method for searching the optimal communication batch size as the MCTS component on the CPU interfaces with DNN operations offloaded to an accelerator (GPU). Using a representative DNN-MCTS algorithm - Alphazero on board game benchmarks, we show that the parallel framework is able to adaptively generate the best-performing parallel implementation, leading to a range of $1.5\times - 3\times$ speedup compared with the baseline methods on CPU and CPU-GPU platforms.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.