Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Augmented Flexible Krylov Subspace methods with applications to Bayesian inverse problems (2310.05285v1)

Published 8 Oct 2023 in math.NA and cs.NA

Abstract: This paper presents two new augmented flexible (AF)-Krylov subspace methods, AF-GMRES and AF-LSQR, to compute solutions of large-scale linear discrete ill-posed problems that can be modeled as the sum of two independent random variables, exhibiting smooth and sparse stochastic characteristics respectively. Following a Bayesian modelling approach, this corresponds to adding a covariance-weighted quadratic term and a sparsity enforcing $\ell_1$ term in the original least-squares minimization scheme. To handle the $\ell_1$ regularization term, the proposed approach constructs a sequence approximating quadratic problems that are partially solved using augmented flexible Krylov-Tikhonov methods. Compared to other traditional methods used to solve this minimization problem, such as those based on iteratively reweighted norm schemes, the new algorithms build a single (augmented, flexible) approximation (Krylov) subspace that encodes information about the different regularization terms through adaptable "preconditioning". The solution space is then expanded as soon as a new problem within the sequence is defined. This also allows for the regularization parameters to be chosen on-the-fly at each iteration. Compared to most recent work on generalized flexible Krylov methods, our methods offer theoretical assurance of convergence and a more stable numerical performance. The efficiency of the new methods is shown through a variety of experiments, including a synthetic image deblurring problem, a synthetic atmospheric transport problem, and fluorescence molecular tomography reconstructions using both synthetic and real-world experimental data.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube