Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Federated Learning: A Cutting-Edge Survey of the Latest Advancements and Applications (2310.05269v3)

Published 8 Oct 2023 in cs.LG, cs.AI, cs.CR, and cs.DC

Abstract: Robust ML models can be developed by leveraging large volumes of data and distributing the computational tasks across numerous devices or servers. Federated learning (FL) is a technique in the realm of ML that facilitates this goal by utilizing cloud infrastructure to enable collaborative model training among a network of decentralized devices. Beyond distributing the computational load, FL targets the resolution of privacy issues and the reduction of communication costs simultaneously. To protect user privacy, FL requires users to send model updates rather than transmitting large quantities of raw and potentially confidential data. Specifically, individuals train ML models locally using their own data and then upload the results in the form of weights and gradients to the cloud for aggregation into the global model. This strategy is also advantageous in environments with limited bandwidth or high communication costs, as it prevents the transmission of large data volumes. With the increasing volume of data and rising privacy concerns, alongside the emergence of large-scale ML models like LLMs, FL presents itself as a timely and relevant solution. It is therefore essential to review current FL algorithms to guide future research that meets the rapidly evolving ML demands. This survey provides a comprehensive analysis and comparison of the most recent FL algorithms, evaluating them on various fronts including mathematical frameworks, privacy protection, resource allocation, and applications. Beyond summarizing existing FL methods, this survey identifies potential gaps, open areas, and future challenges based on the performance reports and algorithms used in recent studies. This survey enables researchers to readily identify existing limitations in the FL field for further exploration.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: