Time-Varying Soft-Maximum Control Barrier Functions for Safety in an A Priori Unknown Environment (2310.05261v2)
Abstract: This paper presents a time-varying soft-maximum composite control barrier function (CBF) that can be used to ensure safety in an a priori unknown environment, where local perception information regarding the safe set is periodically obtained. We consider the scenario where the periodically obtained perception feedback can be used to construct a local CBF that models a local subset of the unknown safe set. Then, we use a novel smooth time-varying soft-maximum function to compose the N most recently obtained local CBFs into a single CBF. This composite CBF models an approximate union of the N most recently obtained local subsets of the safe set. Notably, this composite CBF can have arbitrary relative degree r. Next, this composite CBF is used as a rth-order CBF constraint in a real-time optimization to determine a control that minimizes a quadratic cost while guaranteeing that the state stays in a time-varying subset of the unknown safe set. We also present an application of the time-varying soft-maximum composite CBF method to a nonholonomic ground robot with nonnegligible inertia. In this application, we present a simple approach to generate the local CBFs from the periodically obtained perception data.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.