Improving Discriminative Multi-Modal Learning with Large-Scale Pre-Trained Models (2310.05193v1)
Abstract: This paper investigates how to better leverage large-scale pre-trained uni-modal models to further enhance discriminative multi-modal learning. Even when fine-tuned with only uni-modal data, these models can outperform previous multi-modal models in certain tasks. It's clear that their incorporation into multi-modal learning would significantly improve performance. However, multi-modal learning with these models still suffers from insufficient learning of uni-modal features, which weakens the resulting multi-modal model's generalization ability. While fine-tuning uni-modal models separately and then aggregating their predictions is straightforward, it doesn't allow for adequate adaptation between modalities, also leading to sub-optimal results. To this end, we introduce Multi-Modal Low-Rank Adaptation learning (MMLoRA). By freezing the weights of uni-modal fine-tuned models, adding extra trainable rank decomposition matrices to them, and subsequently performing multi-modal joint training, our method enhances adaptation between modalities and boosts overall performance. We demonstrate the effectiveness of MMLoRA on three dataset categories: audio-visual (e.g., AVE, Kinetics-Sound, CREMA-D), vision-language (e.g., MM-IMDB, UPMC Food101), and RGB-Optical Flow (UCF101).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.