Papers
Topics
Authors
Recent
2000 character limit reached

Instances and Labels: Hierarchy-aware Joint Supervised Contrastive Learning for Hierarchical Multi-Label Text Classification (2310.05128v3)

Published 8 Oct 2023 in cs.CL, cs.AI, and cs.LG

Abstract: Hierarchical multi-label text classification (HMTC) aims at utilizing a label hierarchy in multi-label classification. Recent approaches to HMTC deal with the problem of imposing an over-constrained premise on the output space by using contrastive learning on generated samples in a semi-supervised manner to bring text and label embeddings closer. However, the generation of samples tends to introduce noise as it ignores the correlation between similar samples in the same batch. One solution to this issue is supervised contrastive learning, but it remains an underexplored topic in HMTC due to its complex structured labels. To overcome this challenge, we propose $\textbf{HJCL}$, a $\textbf{H}$ierarchy-aware $\textbf{J}$oint Supervised $\textbf{C}$ontrastive $\textbf{L}$earning method that bridges the gap between supervised contrastive learning and HMTC. Specifically, we employ both instance-wise and label-wise contrastive learning techniques and carefully construct batches to fulfill the contrastive learning objective. Extensive experiments on four multi-path HMTC datasets demonstrate that HJCL achieves promising results and the effectiveness of Contrastive Learning on HMTC.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.