Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Asymmetrically Decentralized Federated Learning (2310.05093v1)

Published 8 Oct 2023 in cs.LG and math.OC

Abstract: To address the communication burden and privacy concerns associated with the centralized server in Federated Learning (FL), Decentralized Federated Learning (DFL) has emerged, which discards the server with a peer-to-peer (P2P) communication framework. However, most existing DFL algorithms are based on symmetric topologies, such as ring and grid topologies, which can easily lead to deadlocks and are susceptible to the impact of network link quality in practice. To address these issues, this paper proposes the DFedSGPSM algorithm, which is based on asymmetric topologies and utilizes the Push-Sum protocol to effectively solve consensus optimization problems. To further improve algorithm performance and alleviate local heterogeneous overfitting in Federated Learning (FL), our algorithm combines the Sharpness Aware Minimization (SAM) optimizer and local momentum. The SAM optimizer employs gradient perturbations to generate locally flat models and searches for models with uniformly low loss values, mitigating local heterogeneous overfitting. The local momentum accelerates the optimization process of the SAM optimizer. Theoretical analysis proves that DFedSGPSM achieves a convergence rate of $\mathcal{O}(\frac{1}{\sqrt{T}})$ in a non-convex smooth setting under mild assumptions. This analysis also reveals that better topological connectivity achieves tighter upper bounds. Empirically, extensive experiments are conducted on the MNIST, CIFAR10, and CIFAR100 datasets, demonstrating the superior performance of our algorithm compared to state-of-the-art optimizers.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.