Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Partial Rank Similarity Minimization Method for Quality MOS Prediction of Unseen Speech Synthesis Systems in Zero-Shot and Semi-supervised setting (2310.05078v1)

Published 8 Oct 2023 in eess.AS and cs.SD

Abstract: This paper introduces a novel objective function for quality mean opinion score (MOS) prediction of unseen speech synthesis systems. The proposed function measures the similarity of relative positions of predicted MOS values, in a mini-batch, rather than the actual MOS values. That is the partial rank similarity is measured (PRS) rather than the individual MOS values as with the L1 loss. Our experiments on out-of-domain speech synthesis systems demonstrate that the PRS outperforms L1 loss in zero-shot and semi-supervised settings, exhibiting stronger correlation with ground truth. These findings highlight the importance of considering rank order, as done by PRS, when training MOS prediction models. We also argue that mean squared error and linear correlation coefficient metrics may be unreliable for evaluating MOS prediction models. In conclusion, PRS-trained models provide a robust framework for evaluating speech quality and offer insights for developing high-quality speech synthesis systems. Code and models are available at github.com/nii-yamagishilab/partial_rank_similarity/

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com