Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Open-Vocabulary Animal Keypoint Detection with Semantic-feature Matching (2310.05056v4)

Published 8 Oct 2023 in cs.CV

Abstract: Current image-based keypoint detection methods for animal (including human) bodies and faces are generally divided into full-supervised and few-shot class-agnostic approaches. The former typically relies on laborious and time-consuming manual annotations, posing considerable challenges in expanding keypoint detection to a broader range of keypoint categories and animal species. The latter, though less dependent on extensive manual input, still requires necessary support images with annotation for reference during testing. To realize zero-shot keypoint detection without any prior annotation, we introduce the Open-Vocabulary Keypoint Detection (OVKD) task, which is innovatively designed to use text prompts for identifying arbitrary keypoints across any species. In pursuit of this goal, we have developed a novel framework named Open-Vocabulary Keypoint Detection with Semantic-feature Matching (KDSM). This framework synergistically combines vision and LLMs, creating an interplay between language features and local keypoint visual features. KDSM enhances its capabilities by integrating Domain Distribution Matrix Matching (DDMM) and other special modules, such as the Vision-Keypoint Relational Awareness (VKRA) module, improving the framework's generalizability and overall performance.Our comprehensive experiments demonstrate that KDSM significantly outperforms the baseline in terms of performance and achieves remarkable success in the OVKD task.Impressively, our method, operating in a zero-shot fashion, still yields results comparable to state-of-the-art few-shot species class-agnostic keypoint detection methods.We will make the source code publicly accessible.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.