Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

WikiIns: A High-Quality Dataset for Controlled Text Editing by Natural Language Instruction (2310.05009v1)

Published 8 Oct 2023 in cs.CL

Abstract: Text editing, i.e., the process of modifying or manipulating text, is a crucial step in human writing process. In this paper, we study the problem of controlled text editing by natural language instruction. According to a given instruction that conveys the edit intention and necessary information, an original draft text is required to be revised into a target text. Existing automatically constructed datasets for this task are limited because they do not have informative natural language instruction. The informativeness requires the information contained in the instruction to be enough to produce the revised text. To address this limitation, we build and release WikiIns, a high-quality controlled text editing dataset with improved informativeness. We first preprocess the Wikipedia edit history database to extract the raw data (WikiIns-Raw). Then we crowdsource high-quality validation and test sets, as well as a small-scale training set (WikiIns-Gold). With the high-quality annotated dataset, we further propose automatic approaches to generate a large-scale ``silver'' training set (WikiIns-Silver). Finally, we provide some insightful analysis on our WikiIns dataset, including the evaluation results and the edit intention analysis. Our analysis and the experiment results on WikiIns may assist the ongoing research on text editing. The dataset, source code and annotation guideline are available at https://github.com/CasparSwift/WikiIns.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.