Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Distantly-Supervised Joint Extraction with Noise-Robust Learning (2310.04994v2)

Published 8 Oct 2023 in cs.CL, cs.AI, and cs.LG

Abstract: Joint entity and relation extraction is a process that identifies entity pairs and their relations using a single model. We focus on the problem of joint extraction in distantly-labeled data, whose labels are generated by aligning entity mentions with the corresponding entity and relation tags using a knowledge base (KB). One key challenge is the presence of noisy labels arising from both incorrect entity and relation annotations, which significantly impairs the quality of supervised learning. Existing approaches, either considering only one source of noise or making decisions using external knowledge, cannot well-utilize significant information in the training data. We propose DENRL, a generalizable framework that 1) incorporates a lightweight transformer backbone into a sequence labeling scheme for joint tagging, and 2) employs a noise-robust framework that regularizes the tagging model with significant relation patterns and entity-relation dependencies, then iteratively self-adapts to instances with less noise from both sources. Surprisingly, experiments on two benchmark datasets show that DENRL, using merely its own parametric distribution and simple data-driven heuristics, outperforms LLM-based baselines by a large margin with better interpretability.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.