Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning Many-to-Many Mapping for Unpaired Real-World Image Super-resolution and Downscaling (2310.04964v1)

Published 8 Oct 2023 in cs.CV and eess.IV

Abstract: Learning based single image super-resolution (SISR) for real-world images has been an active research topic yet a challenging task, due to the lack of paired low-resolution (LR) and high-resolution (HR) training images. Most of the existing unsupervised real-world SISR methods adopt a two-stage training strategy by synthesizing realistic LR images from their HR counterparts first, then training the super-resolution (SR) models in a supervised manner. However, the training of image degradation and SR models in this strategy are separate, ignoring the inherent mutual dependency between downscaling and its inverse upscaling process. Additionally, the ill-posed nature of image degradation is not fully considered. In this paper, we propose an image downscaling and SR model dubbed as SDFlow, which simultaneously learns a bidirectional many-to-many mapping between real-world LR and HR images unsupervisedly. The main idea of SDFlow is to decouple image content and degradation information in the latent space, where content information distribution of LR and HR images is matched in a common latent space. Degradation information of the LR images and the high-frequency information of the HR images are fitted to an easy-to-sample conditional distribution. Experimental results on real-world image SR datasets indicate that SDFlow can generate diverse realistic LR and SR images both quantitatively and qualitatively.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube