Cell Tracking-by-detection using Elliptical Bounding Boxes (2310.04895v2)
Abstract: Cell detection and tracking are paramount for bio-analysis. Recent approaches rely on the tracking-by-model evolution paradigm, which usually consists of training end-to-end deep learning models to detect and track the cells on the frames with promising results. However, such methods require extensive amounts of annotated data, which is time-consuming to obtain and often requires specialized annotators. This work proposes a new approach based on the classical tracking-by-detection paradigm that alleviates the requirement of annotated data. More precisely, it approximates the cell shapes as oriented ellipses and then uses generic-purpose oriented object detectors to identify the cells in each frame. We then rely on a global data association algorithm that explores temporal cell similarity using probability distance metrics, considering that the ellipses relate to two-dimensional Gaussian distributions. Our results show that our method can achieve detection and tracking results competitively with state-of-the-art techniques that require considerably more extensive data annotation. Our code is available at: https://github.com/LucasKirsten/Deep-Cell-Tracking-EBB.
- T. Q. Syed, V. Vigneron, S. Lelandais, G. Barlovatz-Meimon, M. Malo, C. Charrière-Bertrand, and C. Montagne, “Detection and counting of" in vivo" cells to predict cell migratory potential,” in 2008 First Workshops on Image Processing Theory, Tools and Applications, pp. 1–8, IEEE, 2008.
- M. R. C. Leite, I. A. Cestari, and I. N. Cestari, “Computational tool for morphological analysis of cultured neonatal rat cardiomyocytes,” in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3517–3520, IEEE, 2015.
- D. Di Giuseppe, F. Corsi, A. Mencattini, M. C. Comes, P. Casti, C. Di Natale, L. Ghibelli, and E. Martinelli, “Learning cancer-related drug efficacy exploiting consensus in coordinated motility within cell clusters,” IEEE Transactions on Biomedical Engineering, vol. 66, no. 10, pp. 2882–2888, 2019.
- D. Gradeci, A. Bove, G. Charras, A. R. Lowe, and S. Banerjee, “Single-cell approaches to cell competition: high-throughput imaging, machine learning and simulations,” in Seminars in cancer biology, vol. 63, pp. 60–68, Elsevier, 2020.
- J. Hayashida, K. Nishimura, and R. Bise, “Consistent cell tracking in multi-frames with spatio-temporal context by object-level warping loss,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1727–1736, 2022.
- N. Emami, Z. Sedaei, and R. Ferdousi, “Computerized cell tracking: Current methods, tools and challenges,” Visual Informatics, vol. 5, no. 1, pp. 1–13, 2021.
- V. Ulman, M. Maška, K. E. Magnusson, O. Ronneberger, C. Haubold, N. Harder, P. Matula, P. Matula, D. Svoboda, M. Radojevic, et al., “An objective comparison of cell-tracking algorithms,” Nature methods, vol. 14, no. 12, pp. 1141–1152, 2017.
- S. U. Akram, J. Kannala, L. Eklund, and J. Heikkilä, “Cell tracking via proposal generation and selection,” arXiv preprint arXiv:1705.03386, 2017.
- K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of the IEEE international conference on computer vision, pp. 2961–2969, 2017.
- R. Bise, Z. Yin, and T. Kanade, “Reliable cell tracking by global data association,” in 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1004–1010, IEEE, 2011.
- O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical image computing and computer-assisted intervention, pp. 234–241, Springer, 2015.
- R. Bensch and O. Ronneberger, “Cell segmentation and tracking in phase contrast images using graph cut with asymmetric boundary costs,” in 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 1220–1223, IEEE, 2015.
- D. K. Gupta, N. de Bruijn, A. Panteli, and E. Gavves, “Tracking-assisted segmentation of biological cells,” arXiv preprint arXiv:1910.08735, 2019.
- J. Wang, X. Su, L. Zhao, and J. Zhang, “Deep reinforcement learning for data association in cell tracking,” Frontiers in Bioengineering and Biotechnology, vol. 8, p. 298, 2020.
- V. Kulharia, S. Chandra, A. Agrawal, P. Torr, and A. Tyagi, “Box2seg: Attention weighted loss and discriminative feature learning for weakly supervised segmentation,” in European Conference on Computer Vision, pp. 290–308, Springer, 2020.
- F. Xing, Y. Xie, H. Su, F. Liu, and L. Yang, “Deep learning in microscopy image analysis: A survey,” IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 10, pp. 4550–4568, 2017.
- E. Moen, D. Bannon, T. Kudo, W. Graf, M. Covert, and D. Van Valen, “Deep learning for cellular image analysis,” Nature methods, vol. 16, no. 12, pp. 1233–1246, 2019.
- U. Schmidt, M. Weigert, C. Broaddus, and G. Myers, “Cell detection with star-convex polygons,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 265–273, Springer, 2018.
- A. Newell, Z. Huang, and J. Deng, “Associative embedding: End-to-end learning for joint detection and grouping,” in Advances in neural information processing systems, pp. 2277–2287, 2017.
- C. Payer, D. Štern, T. Neff, H. Bischof, and M. Urschler, “Instance segmentation and tracking with cosine embeddings and recurrent hourglass networks,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 3–11, Springer, 2018.
- C. Payer, D. Štern, M. Feiner, H. Bischof, and M. Urschler, “Segmenting and tracking cell instances with cosine embeddings and recurrent hourglass networks,” Medical image analysis, vol. 57, pp. 106–119, 2019.
- M. Zhao, A. Jha, Q. Liu, B. A. Millis, A. Mahadevan-Jansen, L. Lu, B. A. Landman, M. J. Tyska, and Y. Huo, “Faster mean-shift: Gpu-accelerated clustering for cosine embedding-based cell segmentation and tracking,” Medical Image Analysis, vol. 71, p. 102048, 2021.
- D. Liu, D. Zhang, Y. Song, H. Huang, and W. Cai, “Panoptic feature fusion net: a novel instance segmentation paradigm for biomedical and biological images,” IEEE Transactions on Image Processing, vol. 30, pp. 2045–2059, 2021.
- Z. Zhao, L. Yang, H. Zheng, I. H. Guldner, S. Zhang, and D. Z. Chen, “Deep learning based instance segmentation in 3d biomedical images using weak annotation,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 352–360, Springer, 2018.
- T. Zhao and Z. Yin, “Weakly supervised cell segmentation by point annotation,” IEEE Transactions on Medical Imaging, vol. 40, no. 10, pp. 2736–2747, 2020.
- H.-J. Oh, K. Lee, and W.-K. Jeong, “Scribble-supervised cell segmentation using multiscale contrastive regularization,” in 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), pp. 1–5, IEEE, 2022.
- K. Lu, Y. Qian, J. Gong, Z. Zhu, J. Yin, L. Ma, M. Yu, and H. Wang, “Biofabrication of aligned structures that guide cell orientation and applications in tissue engineering,” Bio-Design and Manufacturing, vol. 4, no. 2, pp. 258–277, 2021.
- W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “Ssd: Single shot multibox detector,” in European conference on computer vision, pp. 21–37, Springer, 2016.
- J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779–788, 2016.
- N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, “End-to-end object detection with transformers,” in European conference on computer vision, pp. 213–229, Springer, 2020.
- M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient object detection,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 10781–10790, 2020.
- C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Scaled-yolov4: Scaling cross stage partial network,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13029–13038, June 2021.
- J. Yang, C. Li, and J. Gao, “Focal modulation networks,” arXiv preprint arXiv:2203.11926, 2022.
- S. Mandal and V. Uhlmann, “Splinedist: Automated cell segmentation with spline curves,” in 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 1082–1086, IEEE, 2021.
- Y. Jiang, X. Zhu, X. Wang, S. Yang, W. Li, H. Wang, P. Fu, and Z. Luo, “R2cnn: Rotational region cnn for orientation robust scene text detection,” arXiv preprint arXiv:1706.09579, 2017.
- X. Yang, J. Yan, Z. Feng, and T. He, “R3det: Refined single-stage detector with feature refinement for rotating object,” in AAAI, 2021.
- G.-S. Xia, X. Bai, J. Ding, Z. Zhu, S. Belongie, J. Luo, M. Datcu, M. Pelillo, and L. Zhang, “Dota: A large-scale dataset for object detection in aerial images,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.
- X. Yang, X. Yang, J. Yang, Q. Ming, W. Wang, Q. Tian, and J. Yan, “Learning high-precision bounding box for rotated object detection via kullback-leibler divergence,” in Advances in Neural Information Processing Systems (M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, eds.), vol. 34, pp. 18381–18394, Curran Associates, Inc., 2021.
- M. Maška, V. Ulman, D. Svoboda, P. Matula, P. Matula, C. Ederra, A. Urbiola, T. España, S. Venkatesan, D. M. Balak, et al., “A benchmark for comparison of cell tracking algorithms,” Bioinformatics, vol. 30, no. 11, pp. 1609–1617, 2014.
- E. Türetken, X. Wang, C. Becker, C. Haubold, and P. Fua, “Globally optimal cell tracking using integer programming,” arXiv preprint arXiv:1501.05499, 2015.
- S. U. Akram, J. Kannala, L. Eklund, and J. Heikkilä, “Joint cell segmentation and tracking using cell proposals,” in 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 920–924, IEEE, 2016.
- K. Nishimura, J. Hayashida, C. Wang, D. F. E. Ker, and R. Bise, “Weakly-supervised cell tracking via backward-and-forward propagation,” in European Conference on Computer Vision, pp. 104–121, Springer, 2020.
- K. E. Magnusson and J. Jaldén, “A batch algorithm using iterative application of the viterbi algorithm to track cells and construct cell lineages,” in 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 382–385, IEEE, 2012.
- F. Boukari and S. Makrogiannis, “Automated cell tracking using motion prediction-based matching and event handling,” IEEE/ACM transactions on computational biology and bioinformatics, vol. 17, no. 3, pp. 959–971, 2018.
- B. Xu, J. Shi, M. Lu, J. Cong, L. Wang, and B. Nener, “An automated cell tracking approach with multi-bernoulli filtering and ant colony labor division,” IEEE/ACM transactions on computational biology and bioinformatics, vol. 18, no. 5, pp. 1850–1863, 2019.
- O. Hirose, S. Kawaguchi, T. Tokunaga, Y. Toyoshima, T. Teramoto, S. Kuge, T. Ishihara, Y. Iino, and R. Yoshida, “Spf-celltracker: Tracking multiple cells with strongly-correlated moves using a spatial particle filter,” IEEE/ACM transactions on computational biology and bioinformatics, vol. 15, no. 6, pp. 1822–1831, 2017.
- J. M. Llerena, L. F. Zeni, L. N. Kristen, and C. Jung, “Gaussian bounding boxes and probabilistic intersection-over-union for object detection,” arXiv preprint arXiv:2106.06072, 2021.
- Z. Chen, K. Chen, W. Lin, J. See, H. Yu, Y. Ke, and C. Yang, “Piou loss: Towards accurate oriented object detection in complex environments,” in European conference on computer vision, pp. 195–211, Springer, 2020.
- J. Murrugarra-Llerena, L. N. Kirsten, and C. R. Jung, “Can we trust bounding box annotations for object detection?,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 4813–4822, June 2022.
- X. Yang, J. Yan, M. Qi, W. Wang, Z. Xiaopeng, and T. Qi, “Rethinking rotated object detection with gaussian wasserstein distance loss,” in International Conference on Machine Learning (ICML), 2021.
- A. Bhattacharyya, “On a measure of divergence between two multinomial populations,” Sankhyā: the indian journal of statistics, pp. 401–406, 1946.
- E. Hellinger, “Neue begründung der theorie quadratischer formen von unendlichvielen veränderlichen.,” Journal für die reine und angewandte Mathematik, vol. 1909, no. 136, pp. 210–271, 1909.
- T. Kailath, “The divergence and bhattacharyya distance measures in signal selection,” IEEE transactions on communication technology, vol. 15, no. 1, pp. 52–60, 1967.
- H. W. Kuhn, “The hungarian method for the assignment problem,” Naval research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.
- S. Huh, R. Bise, M. Chen, T. Kanade, et al., “Automated mitosis detection of stem cell populations in phase-contrast microscopy images,” IEEE transactions on medical imaging, vol. 30, no. 3, pp. 586–596, 2010.
- G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.
- L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and M. Pietikäinen, “Deep learning for generic object detection: A survey,” International journal of computer vision, vol. 128, no. 2, pp. 261–318, 2020.
- K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.
- J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255, Ieee, 2009.
- J. Forrest, T. Ralphs, H. G. Santos, S. Vigerske, J. Forrest, L. Hafer, B. Kristjansson, jpfasano, EdwinStraver, M. Lubin, rlougee, jpgoncal1, Jan-Willem, h-i gassmann, S. Brito, Cristina, M. Saltzman, tosttost, B. Pitrus, F. MATSUSHIMA, and to st, “coin-or/cbc: Release releases/2.10.8,” May 2022.
- G. Van Rossum and F. L. Drake Jr, Python reference manual. Centrum voor Wiskunde en Informatica Amsterdam, 1995.
- K. Bernardin and R. Stiefelhagen, “Evaluating multiple object tracking performance: the clear mot metrics,” EURASIP Journal on Image and Video Processing, vol. 2008, pp. 1–10, 2008.
- A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler, “Mot16: A benchmark for multi-object tracking,” arXiv preprint arXiv:1603.00831, 2016.
- E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi, “Performance measures and a data set for multi-target, multi-camera tracking,” in European conference on computer vision, pp. 17–35, Springer, 2016.
- F. Boukari and S. Makrogiannis, “Joint level-set and spatio-temporal motion detection for cell segmentation,” BMC Medical Genomics, vol. 9, no. 2, pp. 179–194, 2016.
- S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,” in Advances in Neural Information Processing Systems 30 (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds.), pp. 4765–4774, Curran Associates, Inc., 2017.
- S. M. Lundberg, B. Nair, M. S. Vavilala, M. Horibe, M. J. Eisses, T. Adams, D. E. Liston, D. K.-W. Low, S.-F. Newman, J. Kim, et al., “Explainable machine-learning predictions for the prevention of hypoxaemia during surgery,” Nature Biomedical Engineering, vol. 2, no. 10, p. 749, 2018.