Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

AirIMU: Learning Uncertainty Propagation for Inertial Odometry (2310.04874v4)

Published 7 Oct 2023 in cs.RO and cs.AI

Abstract: Inertial odometry (IO) using strap-down inertial measurement units (IMUs) is critical in many robotic applications where precise orientation and position tracking are essential. Prior kinematic motion model-based IO methods often use a simplified linearized IMU noise model and thus usually encounter difficulties in modeling non-deterministic errors arising from environmental disturbances and mechanical defects. In contrast, data-driven IO methods struggle to accurately model the sensor motions, often leading to generalizability and interoperability issues. To address these challenges, we present AirIMU, a hybrid approach to estimate the uncertainty, especially the non-deterministic errors, by data-driven methods and increase the generalization abilities using model-based methods. We demonstrate the adaptability of AirIMU using a full spectrum of IMUs, from low-cost automotive grades to high-end navigation grades. We also validate its effectiveness on various platforms, including hand-held devices, vehicles, and a helicopter that covers a trajectory of 262 kilometers. In the ablation study, we validate the effectiveness of our learned uncertainty in an IMU-GPS pose graph optimization experiment, achieving a 31.6\% improvement in accuracy. Experiments demonstrate that jointly training the IMU noise correction and uncertainty estimation synergistically benefits both tasks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com