Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Improving the Reliability of Large Language Models by Leveraging Uncertainty-Aware In-Context Learning (2310.04782v1)

Published 7 Oct 2023 in cs.CL

Abstract: In recent years, large-scale LLMs have gained attention for their impressive text generation capabilities. However, these models often face the challenge of "hallucination," which undermines their reliability. In this study, we introduce an uncertainty-aware in-context learning framework to empower the model to enhance or reject its output in response to uncertainty. Human-defined methods for estimating uncertainty typically assume that "uncertainty is lower when the model's response is correct compared to when it is incorrect." However, setting a precise threshold to distinguish correctness is challenging. Therefore, we introduce uncertainty information as an intermediary variable that implicitly influences the model's behavior. Our innovative uncertainty-aware in-context learning framework involves fine-tuning the LLM using a calibration dataset. Our aim is to improve the model's responses by filtering out answers with high uncertainty while considering the model's knowledge limitations. We evaluate the model's knowledge by examining multiple responses to the same question for the presence of a correct answer. When the model lacks relevant knowledge, the response should indicate that the question cannot be answered. Conversely, when the model has relevant knowledge, the response should provide the correct answer. Extensive experiments confirm the effectiveness of our framework, leading to two key findings. First, the logit output values of the LLM partly reflect inherent uncertainty. Second, our model autonomously recognizes uncertainty, resulting in improved responses.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.