Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Zero-shot Cross-lingual Transfer without Parallel Corpus (2310.04726v1)

Published 7 Oct 2023 in cs.CL

Abstract: Recently, although pre-trained LLMs have achieved great success on multilingual NLP (Natural Language Processing) tasks, the lack of training data on many tasks in low-resource languages still limits their performance. One effective way of solving that problem is to transfer knowledge from rich-resource languages to low-resource languages. However, many previous works on cross-lingual transfer rely heavily on the parallel corpus or translation models, which are often difficult to obtain. We propose a novel approach to conduct zero-shot cross-lingual transfer with a pre-trained model. It consists of a Bilingual Task Fitting module that applies task-related bilingual information alignment; a self-training module generates pseudo soft and hard labels for unlabeled data and utilizes them to conduct self-training. We got the new SOTA on different tasks without any dependencies on the parallel corpus or translation models.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.