Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Zero-shot Cross-lingual Transfer without Parallel Corpus (2310.04726v1)

Published 7 Oct 2023 in cs.CL

Abstract: Recently, although pre-trained LLMs have achieved great success on multilingual NLP (Natural Language Processing) tasks, the lack of training data on many tasks in low-resource languages still limits their performance. One effective way of solving that problem is to transfer knowledge from rich-resource languages to low-resource languages. However, many previous works on cross-lingual transfer rely heavily on the parallel corpus or translation models, which are often difficult to obtain. We propose a novel approach to conduct zero-shot cross-lingual transfer with a pre-trained model. It consists of a Bilingual Task Fitting module that applies task-related bilingual information alignment; a self-training module generates pseudo soft and hard labels for unlabeled data and utilizes them to conduct self-training. We got the new SOTA on different tasks without any dependencies on the parallel corpus or translation models.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.