Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Adaptive Control of an Inverted Pendulum by a Reinforcement Learning-based LQR Method (2310.04436v2)

Published 30 Sep 2023 in eess.SY and cs.SY

Abstract: Inverted pendulums constitute one of the popular systems for benchmarking control algorithms. Several methods have been proposed for the control of this system, the majority of which rely on the availability of a mathematical model. However, deriving a mathematical model using physical parameters or system identification techniques requires manual effort. Moreover, the designed controllers may perform poorly if system parameters change. To mitigate these problems, recently, some studies used Reinforcement Learning (RL) based approaches for the control of inverted pendulum systems. Unfortunately, these methods suffer from slow convergence and local minimum problems. Moreover, they may require hyperparameter tuning which complicates the design process significantly. To alleviate these problems, the present study proposes an LQR-based RL method for adaptive balancing control of an inverted pendulum. As shown by numerical experiments, the algorithm stabilizes the system very fast without requiring a mathematical model or extensive hyperparameter tuning. In addition, it can adapt to parametric changes online.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.