Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Adaptive Control of an Inverted Pendulum by a Reinforcement Learning-based LQR Method (2310.04436v2)

Published 30 Sep 2023 in eess.SY and cs.SY

Abstract: Inverted pendulums constitute one of the popular systems for benchmarking control algorithms. Several methods have been proposed for the control of this system, the majority of which rely on the availability of a mathematical model. However, deriving a mathematical model using physical parameters or system identification techniques requires manual effort. Moreover, the designed controllers may perform poorly if system parameters change. To mitigate these problems, recently, some studies used Reinforcement Learning (RL) based approaches for the control of inverted pendulum systems. Unfortunately, these methods suffer from slow convergence and local minimum problems. Moreover, they may require hyperparameter tuning which complicates the design process significantly. To alleviate these problems, the present study proposes an LQR-based RL method for adaptive balancing control of an inverted pendulum. As shown by numerical experiments, the algorithm stabilizes the system very fast without requiring a mathematical model or extensive hyperparameter tuning. In addition, it can adapt to parametric changes online.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)