Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

On the Parameterized Complexity of Multiway Near-Separator (2310.04332v1)

Published 6 Oct 2023 in cs.DS

Abstract: We study a new graph separation problem called Multiway Near-Separator. Given an undirected graph $G$, integer $k$, and terminal set $T \subseteq V(G)$, it asks whether there is a vertex set $S \subseteq V(G) \setminus T$ of size at most $k$ such that in graph $G-S$, no pair of distinct terminals can be connected by two pairwise internally vertex-disjoint paths. Hence each terminal pair can be separated in $G-S$ by removing at most one vertex. The problem is therefore a generalization of (Node) Multiway Cut, which asks for a vertex set for which each terminal is in a different component of $G-S$. We develop a fixed-parameter tractable algorithm for Multiway Near-Separator running in time $2{O(k \log k)} * n{O(1)}$. Our algorithm is based on a new pushing lemma for solutions with respect to important separators, along with two problem-specific ingredients. The first is a polynomial-time subroutine to reduce the number of terminals in the instance to a polynomial in the solution size $k$ plus the size of a given suboptimal solution. The second is a polynomial-time algorithm that, given a graph $G$ and terminal set $T \subseteq V(G)$ along with a single vertex $x \in V(G)$ that forms a multiway near-separator, computes a 14-approximation for the problem of finding a multiway near-separator not containing $x$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.