Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deterministic Clustering in High Dimensional Spaces: Sketches and Approximation (2310.04076v1)

Published 6 Oct 2023 in cs.DS

Abstract: In all state-of-the-art sketching and coreset techniques for clustering, as well as in the best known fixed-parameter tractable approximation algorithms, randomness plays a key role. For the classic $k$-median and $k$-means problems, there are no known deterministic dimensionality reduction procedure or coreset construction that avoid an exponential dependency on the input dimension $d$, the precision parameter $\varepsilon{-1}$ or $k$. Furthermore, there is no coreset construction that succeeds with probability $1-1/n$ and whose size does not depend on the number of input points, $n$. This has led researchers in the area to ask what is the power of randomness for clustering sketches [Feldman, WIREs Data Mining Knowl. Discov'20]. Similarly, the best approximation ratio achievable deterministically without a complexity exponential in the dimension are $\Omega(1)$ for both $k$-median and $k$-means, even when allowing a complexity FPT in the number of clusters $k$. This stands in sharp contrast with the $(1+\varepsilon)$-approximation achievable in that case, when allowing randomization. In this paper, we provide deterministic sketches constructions for clustering, whose size bounds are close to the best-known randomized ones. We also construct a deterministic algorithm for computing $(1+\varepsilon)$-approximation to $k$-median and $k$-means in high dimensional Euclidean spaces in time $2{k2/\varepsilon{O(1)}} poly(nd)$, close to the best randomized complexity. Furthermore, our new insights on sketches also yield a randomized coreset construction that uses uniform sampling, that immediately improves over the recent results of [Braverman et al. FOCS '22] by a factor $k$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.