Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 25 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Regress Before Construct: Regress Autoencoder for Point Cloud Self-supervised Learning (2310.03670v1)

Published 25 Sep 2023 in cs.CV

Abstract: Masked Autoencoders (MAE) have demonstrated promising performance in self-supervised learning for both 2D and 3D computer vision. Nevertheless, existing MAE-based methods still have certain drawbacks. Firstly, the functional decoupling between the encoder and decoder is incomplete, which limits the encoder's representation learning ability. Secondly, downstream tasks solely utilize the encoder, failing to fully leverage the knowledge acquired through the encoder-decoder architecture in the pre-text task. In this paper, we propose Point Regress AutoEncoder (Point-RAE), a new scheme for regressive autoencoders for point cloud self-supervised learning. The proposed method decouples functions between the decoder and the encoder by introducing a mask regressor, which predicts the masked patch representation from the visible patch representation encoded by the encoder and the decoder reconstructs the target from the predicted masked patch representation. By doing so, we minimize the impact of decoder updates on the representation space of the encoder. Moreover, we introduce an alignment constraint to ensure that the representations for masked patches, predicted from the encoded representations of visible patches, are aligned with the masked patch presentations computed from the encoder. To make full use of the knowledge learned in the pre-training stage, we design a new finetune mode for the proposed Point-RAE. Extensive experiments demonstrate that our approach is efficient during pre-training and generalizes well on various downstream tasks. Specifically, our pre-trained models achieve a high accuracy of \textbf{90.28\%} on the ScanObjectNN hardest split and \textbf{94.1\%} accuracy on ModelNet40, surpassing all the other self-supervised learning methods. Our code and pretrained model are public available at: \url{https://github.com/liuyyy111/Point-RAE}.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.