Best-Response Dynamics in Tullock Contests with Convex Costs (2310.03528v2)
Abstract: We study the convergence of best-response dynamics in Tullock contests with convex cost functions (these games always have a unique pure-strategy Nash equilibrium). We show that best-response dynamics rapidly converges to the equilibrium for homogeneous agents. For two homogeneous agents, we show convergence to an $\epsilon$-approximate equilibrium in $\Theta(\log\log(1/\epsilon))$ steps. For $n \ge 3$ agents, the dynamics is not unique because at each step $n-1 \ge 2$ agents can make non-trivial moves. We consider the model proposed by Ghosh and Goldberg (2023), where the agent making the move is randomly selected at each time step. We show convergence to an $\epsilon$-approximate equilibrium in $O(\beta \log(n/(\epsilon\delta)))$ steps with probability $1-\delta$, where $\beta$ is a parameter of the agent selection process, e.g., $\beta = n2 \log(n)$ if agents are selected uniformly at random at each time step. We complement this result with a lower bound of $\Omega(n + \log(1/\epsilon)/\log(n))$ applicable for any agent selection process.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.