Papers
Topics
Authors
Recent
2000 character limit reached

Machine learning the interaction network in coupled dynamical systems (2310.03378v2)

Published 5 Oct 2023 in math.DS, cs.LG, and physics.comp-ph

Abstract: The study of interacting dynamical systems continues to attract research interest in various fields of science and engineering. In a collection of interacting particles, the interaction network contains information about how various components interact with one another. Inferring the information about the interaction network from the dynamics of agents is a problem of long-standing interest. In this work, we employ a self-supervised neural network model to achieve two outcomes: to recover the interaction network and to predict the dynamics of individual agents. Both these information are inferred solely from the observed trajectory data. This work presents an application of the Neural Relational Inference model to two dynamical systems: coupled particles mediated by Hooke's law interaction and coupled phase (Kuramoto) oscillators.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.