Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Enhancing Robust Representation in Adversarial Training: Alignment and Exclusion Criteria (2310.03358v2)

Published 5 Oct 2023 in cs.CV, cs.AI, and cs.LG

Abstract: Deep neural networks are vulnerable to adversarial noise. Adversarial Training (AT) has been demonstrated to be the most effective defense strategy to protect neural networks from being fooled. However, we find AT omits to learning robust features, resulting in poor performance of adversarial robustness. To address this issue, we highlight two criteria of robust representation: (1) Exclusion: \emph{the feature of examples keeps away from that of other classes}; (2) Alignment: \emph{the feature of natural and corresponding adversarial examples is close to each other}. These motivate us to propose a generic framework of AT to gain robust representation, by the asymmetric negative contrast and reverse attention. Specifically, we design an asymmetric negative contrast based on predicted probabilities, to push away examples of different classes in the feature space. Moreover, we propose to weight feature by parameters of the linear classifier as the reverse attention, to obtain class-aware feature and pull close the feature of the same class. Empirical evaluations on three benchmark datasets show our methods greatly advance the robustness of AT and achieve state-of-the-art performance.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.