Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Vehicle Cabin Climate MPC Parameter Tuning Using Constrained Contextual Bayesian Optimization (C-CMES) (2310.03330v1)

Published 5 Oct 2023 in eess.SY and cs.SY

Abstract: Climate-controlled cabins have for decades been standard in vehicles. Model Predictive Controllers (MPCs) have shown promising results in achieving temperature tracking in vehicle cabins and may improve upon model-free control performance. However, for the multi-zone climate control case, proper controller tuning is challenging, as externally, e.g., passenger-triggered changes in compressor setting and thus mass flow lead to degraded control performance. This paper presents a tuning method to automatically determine robust MPC parameters, as a function of the blower mass flow. Constrained contextual Bayesian optimization (BO) is used to derive policies minimizing a high-level cost function subject to constraints in a defined scenario. The proposed method leverages random disturbances and model-plant mismatch within the training episodes to generate controller parameters achieving robust disturbance rejection. The method contains a postprocessing step to achieve smooth policies that can be utilized in real-world applications. First, simulation results show that the mass flow-dependent policy outperforms a constant parametrization, while achieving the desired closed-loop behavior. Second, the robust tuning method greatly reduces worst-case overshoot and produces consistent closed-loop behavior under varying operating conditions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.