Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Algorithm to find new identifiable reparametrizations of parametric rational ODE models (2310.03057v4)

Published 4 Oct 2023 in eess.SY, cs.SY, math.AG, math.DS, and q-bio.QM

Abstract: Structural identifiability concerns the question of which unknown parameters of a model can be recovered from (perfect) input-output data. If all of the parameters of a model can be recovered from data, the model is said to be identifiable. However, in many models, there are parameters that can take on an infinite number of values but yield the same input-output data. In this case, those parameters and the model are called unidentifiable. The question is then what to do with an unidentifiable model. One can try to add more input-output data or decrease the number of unknown parameters, if experimentally feasible, or try to find a reparametrization to make the model identifiable. In this paper, we take the latter approach. While existing approaches to find identifiable reparametrizations were limited to scaling reparametrizations or were not guaranteed to find a globally identifiable reparametrization even if it exists, we significantly broaden the class of models for which we can find a globally identifiable model with the same input-output behavior as the original one. We also prove that, for linear models, a globally identifiable reparametrization always exists and show that, for a certain class of linear compartmental models, with and without inputs, an explicit reparametrization formula exists. We illustrate our method on several examples and provide detailed analysis in supplementary material on github.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: