Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

GPT-MolBERTa: GPT Molecular Features Language Model for molecular property prediction (2310.03030v3)

Published 20 Sep 2023 in physics.chem-ph and cs.LG

Abstract: With the emergence of Transformer architectures and their powerful understanding of textual data, a new horizon has opened up to predict the molecular properties based on text description. While SMILES are the most common form of representation, they are lacking robustness, rich information and canonicity, which limit their effectiveness in becoming generalizable representations. Here, we present GPT-MolBERTa, a self-supervised LLM which uses detailed textual descriptions of molecules to predict their properties. A text based description of 326000 molecules were collected using ChatGPT and used to train LLM to learn the representation of molecules. To predict the properties for the downstream tasks, both BERT and RoBERTa models were used in the finetuning stage. Experiments show that GPT-MolBERTa performs well on various molecule property benchmarks, and approaching state of the art performance in regression tasks. Additionally, further analysis of the attention mechanisms show that GPT-MolBERTa is able to pick up important information from the input textual data, displaying the interpretability of the model.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube