Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$(ε, u)$-Adaptive Regret Minimization in Heavy-Tailed Bandits (2310.02975v2)

Published 4 Oct 2023 in cs.LG and cs.AI

Abstract: Heavy-tailed distributions naturally arise in several settings, from finance to telecommunications. While regret minimization under subgaussian or bounded rewards has been widely studied, learning with heavy-tailed distributions only gained popularity over the last decade. In this paper, we consider the setting in which the reward distributions have finite absolute raw moments of maximum order $1+\epsilon$, uniformly bounded by a constant $u<+\infty$, for some $\epsilon \in (0,1]$. In this setting, we study the regret minimization problem when $\epsilon$ and $u$ are unknown to the learner and it has to adapt. First, we show that adaptation comes at a cost and derive two negative results proving that the same regret guarantees of the non-adaptive case cannot be achieved with no further assumptions. Then, we devise and analyze a fully data-driven trimmed mean estimator and propose a novel adaptive regret minimization algorithm, AdaR-UCB, that leverages such an estimator. Finally, we show that AdaR-UCB is the first algorithm that, under a known distributional assumption, enjoys regret guarantees nearly matching those of the non-adaptive heavy-tailed case.

Summary

We haven't generated a summary for this paper yet.