Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Potential Factors Leading to Popularity Unfairness in Recommender Systems: A User-Centered Analysis (2310.02961v1)

Published 4 Oct 2023 in cs.IR

Abstract: Popularity bias is a well-known issue in recommender systems where few popular items are over-represented in the input data, while majority of other less popular items are under-represented. This disparate representation often leads to bias in exposure given to the items in the recommendation results. Extensive research examined this bias from item perspective and attempted to mitigate it by enhancing the recommendation of less popular items. However, a recent research has revealed the impact of this bias on users. Users with different degree of tolerance toward popular items are not fairly served by the recommendation system: users interested in less popular items receive more popular items in their recommendations, while users interested in popular items are recommended what they want. This is mainly due to the popularity bias that popular items are over-recommended. In this paper, we aim at investigating the factors leading to this user-side unfairness of popularity bias in recommender systems. In particular, we investigate two factors: 1) the relationship between this unfairness and users' interest toward items' categories (e.g., movie genres), 2) the relationship between this unfairness and the diversity of the popularity group in users' profile (the degree to which the user is interested in items with different degree of popularity). Experiments on a movie recommendation dataset using multiple recommendation algorithms show that these two factors are significantly correlated with the degree of popularity unfairness in the recommendation results.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube