Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Credit card score prediction using machine learning models: A new dataset (2310.02956v2)

Published 4 Oct 2023 in cs.LG and cs.AI

Abstract: The use of credit cards has recently increased, creating an essential need for credit card assessment methods to minimize potential risks. This study investigates the utilization of ML models for credit card default prediction system. The main goal here is to investigate the best-performing ML model for new proposed credit card scoring dataset. This new dataset includes credit card transaction histories and customer profiles, is proposed and tested using a variety of machine learning algorithms, including logistic regression, decision trees, random forests, multi-layer perceptron (MLP) neural network, XGBoost, and LightGBM. To prepare the data for machine learning models, we perform data pre-processing, feature extraction, feature selection, and data balancing techniques. Experimental results demonstrate that MLP outperforms logistic regression, decision trees, random forests, LightGBM, and XGBoost in terms of predictive performance in true positive rate, achieving an impressive area under the curve (AUC) of 86.7% and an accuracy rate of 91.6%, with a recall rate exceeding 80%. These results indicate the superiority of MLP in predicting the default customers and assessing the potential risks. Furthermore, they help banks and other financial institutions in predicting loan defaults at an earlier stage.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube