Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Stable and Interpretable Deep Learning for Tabular Data: Introducing InterpreTabNet with the Novel InterpreStability Metric (2310.02870v1)

Published 4 Oct 2023 in cs.LG and cs.AI

Abstract: As AI integrates deeper into diverse sectors, the quest for powerful models has intensified. While significant strides have been made in boosting model capabilities and their applicability across domains, a glaring challenge persists: many of these state-of-the-art models remain as black boxes. This opacity not only complicates the explanation of model decisions to end-users but also obstructs insights into intermediate processes for model designers. To address these challenges, we introduce InterpreTabNet, a model designed to enhance both classification accuracy and interpretability by leveraging the TabNet architecture with an improved attentive module. This design ensures robust gradient propagation and computational stability. Additionally, we present a novel evaluation metric, InterpreStability, which quantifies the stability of a model's interpretability. The proposed model and metric mark a significant stride forward in explainable models' research, setting a standard for transparency and interpretability in AI model design and application across diverse sectors. InterpreTabNet surpasses other leading solutions in tabular data analysis across varied application scenarios, paving the way for further research into creating deep-learning models that are both highly accurate and inherently explainable. The introduction of the InterpreStability metric ensures that the interpretability of future models can be measured and compared in a consistent and rigorous manner. Collectively, these contributions have the potential to promote the design principles and development of next-generation interpretable AI models, widening the adoption of interpretable AI solutions in critical decision-making environments.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.