Papers
Topics
Authors
Recent
2000 character limit reached

Multi-Resolution Fusion for Fully Automatic Cephalometric Landmark Detection (2310.02855v1)

Published 4 Oct 2023 in eess.IV and cs.CV

Abstract: Cephalometric landmark detection on lateral skull X-ray images plays a crucial role in the diagnosis of certain dental diseases. Accurate and effective identification of these landmarks presents a significant challenge. Based on extensive data observations and quantitative analyses, we discovered that visual features from different receptive fields affect the detection accuracy of various landmarks differently. As a result, we employed an image pyramid structure, integrating multiple resolutions as input to train a series of models with different receptive fields, aiming to achieve the optimal feature combination for each landmark. Moreover, we applied several data augmentation techniques during training to enhance the model's robustness across various devices and measurement alternatives. We implemented this method in the Cephalometric Landmark Detection in Lateral X-ray Images 2023 Challenge and achieved a Mean Radial Error (MRE) of 1.62 mm and a Success Detection Rate (SDR) 2.0mm of 74.18% in the final testing phase.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.