Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On a Traveling Salesman Problem for Points in the Unit Cube (2310.02839v3)

Published 4 Oct 2023 in math.CO, cs.CG, and cs.DM

Abstract: Let $X$ be an $n$-element point set in the $k$-dimensional unit cube $[0,1]k$ where $k \geq 2$. According to an old result of Bollob\'as and Meir (1992), there exists a cycle (tour) $x_1, x_2, \ldots, x_n$ through the $n$ points, such that $\left(\sum_{i=1}n |x_i - x_{i+1}|k \right){1/k} \leq c_k$, where $|x-y|$ is the Euclidean distance between $x$ and $y$, and $c_k$ is an absolute constant that depends only on $k$, where $x_{n+1} \equiv x_1$. From the other direction, for every $k \geq 2$ and $n \geq 2$, there exist $n$ points in $[0,1]k$, such that their shortest tour satisfies $\left(\sum_{i=1}n |x_i - x_{i+1}|k \right){1/k} = 2{1/k} \cdot \sqrt{k}$. For the plane, the best constant is $c_2=2$ and this is the only exact value known. Bollob{\'a}s and Meir showed that one can take $c_k = 9 \left(\frac23 \right){1/k} \cdot \sqrt{k}$ for every $k \geq 3$ and conjectured that the best constant is $c_k = 2{1/k} \cdot \sqrt{k}$, for every $k \geq 2$. Here we significantly improve the upper bound and show that one can take $c_k = 3 \sqrt5 \left(\frac23 \right){1/k} \cdot \sqrt{k}$ or $c_k = 2.91 \sqrt{k} \ (1+o_k(1))$. Our bounds are constructive. We also show that $c_3 \geq 2{7/6}$, which disproves the conjecture for $k=3$. Connections to matching problems, power assignment problems, related problems, including algorithms, are discussed in this context. A slightly revised version of the Bollob\'as--Meir conjecture is proposed.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: