Hybrid Quantum Machine Learning Assisted Classification of COVID-19 from Computed Tomography Scans (2310.02748v1)
Abstract: Practical quantum computing (QC) is still in its infancy and problems considered are usually fairly small, especially in quantum machine learning when compared to its classical counterpart. Image processing applications in particular require models that are able to handle a large amount of features, and while classical approaches can easily tackle this, it is a major challenge and a cause for harsh restrictions in contemporary QC. In this paper, we apply a hybrid quantum machine learning approach to a practically relevant problem with real world-data. That is, we apply hybrid quantum transfer learning to an image processing task in the field of medical image processing. More specifically, we classify large CT-scans of the lung into COVID-19, CAP, or Normal. We discuss quantum image embedding as well as hybrid quantum machine learning and evaluate several approaches to quantum transfer learning with various quantum circuits and embedding techniques.
- D. Herman, C. Googin, X. Liu, A. Galda, I. Safro, Y. Sun, M. Pistoia, and Y. Alexeev, “A survey of quantum computing for finance,” arXiv preprint arXiv:2201.02773, 2022.
- D. J. Egger, C. Gambella, J. Marecek, S. McFaddin, M. Mevissen, R. Raymond, A. Simonetto, S. Woerner, and E. Yndurain, “Quantum computing for finance: State-of-the-art and future prospects,” IEEE Transactions on Quantum Engineering, vol. 1, pp. 1–24, 2020.
- I. Kassal, J. D. Whitfield, A. Perdomo-Ortiz, M.-H. Yung, and A. Aspuru-Guzik, “Simulating chemistry using quantum computers,” Annual review of physical chemistry, vol. 62, pp. 185–207, 2011.
- Y. Cao, J. Romero, J. P. Olson, M. Degroote, P. D. Johnson, M. Kieferová, I. D. Kivlichan, T. Menke, B. Peropadre, N. P. Sawaya et al., “Quantum chemistry in the age of quantum computing,” Chemical reviews, vol. 119, no. 19, pp. 10 856–10 915, 2019.
- K. L. Brown, W. J. Munro, and V. M. Kendon, “Using quantum computers for quantum simulation,” Entropy, vol. 12, no. 11, pp. 2268–2307, 2010.
- M. Schuld, I. Sinayskiy, and F. Petruccione, “An introduction to quantum machine learning,” Contemporary Physics, vol. 56, no. 2, pp. 172–185, 2015.
- J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, “Quantum machine learning,” Nature, vol. 549, no. 7671, pp. 195–202, 2017.
- E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate optimization algorithm,” arXiv preprint arXiv:1411.4028, 2014.
- J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum, vol. 2, p. 79, 2018.
- P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM review, vol. 41, no. 2, pp. 303–332, 1999.
- L. K. Grover, “A fast quantum mechanical algorithm for database search,” in Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, 1996, pp. 212–219.
- A. Mari, T. R. Bromley, J. Izaac, M. Schuld, and N. Killoran, “Transfer learning in hybrid classical-quantum neural networks,” arXiv preprint arXiv:1912.08278, 2019.
- P. Altmann., L. Sünkel., J. Stein., T. Müller., C. Roch., and C. Linnhoff-Popien., “Sequent: Towards traceable quantum machine learning using sequential quantum enhanced training,” in Proceedings of the 15th International Conference on Agents and Artificial Intelligence - Volume 3: ICAART,, INSTICC. SciTePress, 2023, pp. 744–751.
- S. Pramanik, M. G. Chandra, C. Sridhar, A. Kulkarni, P. Sahoo, C. D. Vishwa, H. Sharma, V. Navelkar, S. Poojary, P. Shah et al., “A quantum-classical hybrid method for image classification and segmentation,” in 2022 IEEE/ACM 7th Symposium on Edge Computing (SEC). IEEE, 2022, pp. 450–455.
- S. Otgonbaatar, G. Schwarz, M. Datcu, and D. Kranzlmüller, “Quantum transfer learning for real-world, small, and high-dimensional datasets,” 2022.
- V. Azevedo, C. Silva, and I. Dutra, “Quantum transfer learning for breast cancer detection,” Quantum Machine Intelligence, vol. 4, no. 1, p. 5, 2022.
- R. Majumdar, B. Baral, B. Bhalgamiya, and T. D. Roy, “Histopathological cancer detection using hybrid quantum computing,” arXiv preprint arXiv:2302.04633, 2023.
- J. Landman, N. Mathur, Y. Y. Li, M. Strahm, S. Kazdaghli, A. Prakash, and I. Kerenidis, “Quantum methods for neural networks and application to medical image classification,” Quantum, vol. 6, p. 881, 2022.
- M. J. Umer, J. Amin, M. Sharif, M. A. Anjum, F. Azam, and J. H. Shah, “An integrated framework for covid-19 classification based on classical and quantum transfer learning from a chest radiograph,” Concurrency and Computation: Practice and Experience, vol. 34, no. 20, p. e6434, 2022.
- A. Tahamtan and A. Ardebili, “Real-time rt-pcr in covid-19 detection: issues affecting the results,” Expert review of molecular diagnostics, vol. 20, no. 5, pp. 453–454, 2020.
- R. Yang, X. Li, H. Liu, Y. Zhen, X. Zhang, Q. X. Xiong, Y. Luo, C. Gao, and W. Zeng, “Chest ct severity score: An imaging tool for assessing severe covid-19,” Radiology Cardiothoracic Imaging, vol. 2, no. 2, 2020.
- Y. Fang, H. Zhang, J. Xie, M. Lin, L. Ying, P. Pang, and W. Ji, “Sensitivity of chest ct for covid-19: Comparison to rt-pcr,” Radiology, vol. 296, no. 2, 2020.
- Z. Ye, Y. Zhang, Z. Huang, and B. Song, “Chest ct manifestations of new coronavirus disease 2019 (covid-19): a pictorial review,” European Radiology, vol. 30, pp. 4381–4389, 2020.
- K. Sahu, A. Lal, and A. Mishra, “An update on ct chest findings in coronavirus disease-19 (covid-19),” Heart Lung, vol. 49, no. 5, pp. 442–443, 2020.
- M. Roberts, D. Driggs, M. Thorpe, J. Gilbey, M. Yeung, S. Ursprung, A. Aviles-Rivero, C. Etmann, C. McCague, L. Beer, J. Weir-McCall, Z. Teng, E. Gkrania-Klotsas, J. Rudd, E. Sala, and C.-B. Schönlieb, “Common pitfalls and recommendations for using machine learning to detect and prognosticate for covid-19 using chest radiographs and ct scans,” Nature Machine Intelligence, vol. 3, pp. 199–217, 2021.
- S. Reporting, “Press release: Planqk & smart reporting - ki-gestützte covid-19 befundung von smart reporting evaluiert quantentechnologie für schnellere radiologische diagnose,” https://www.smart-reporting.com/de/neuigkeiten/planqk, 2022.
- P. Q. Le, F. Dong, and K. Hirota, “A flexible representation of quantum images for polynomial preparation, image compression, and processing operations,” Quantum Information Processing, vol. 10, pp. 63–84, 2011.
- Y. Zhang, K. Lu, Y. Gao, and M. Wang, “Neqr: a novel enhanced quantum representation of digital images,” Quantum Information Processing, vol. 12, pp. 2833–2860, 2013.
- N. Jiang and L. Wang, “Quantum image scaling using nearest neighbor interpolation,” p. 1559–1571, Sep 2014. [Online]. Available: http://dx.doi.org/10.1007/s11128-014-0841-8
- H.-S. Li, P. Fan, H.-Y. Xia, H. Peng, and S. Song, “Quantum implementation circuits of quantum signal representation and type conversion,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 1, pp. 341–354, 2019.
- B. Wang, M.-q. Hao, P.-c. Li, and Z.-b. Liu, “Quantum Representation of Indexed Images and its Applications,” International Journal of Theoretical Physics, vol. 59, no. 2, pp. 374–402, Nov. 2019.
- X. Liu, D. Xiao, W. Huang, and C. Liu, “Quantum block image encryption based on arnold transform and sine chaotification model,” IEEE Access, vol. 7, pp. 57 188–57 199, 2019.
- L. Wang, Q.-W. Ran, and J. Ma, “Double quantum color images encryption scheme based on dqrci,” Multimedia Tools and Applications, vol. 79, pp. 6661 – 6687, 2019.
- R. LaRose and B. Coyle, “Robust data encodings for quantum classifiers,” ArXiv, vol. abs/2003.01695, 2020.
- K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, “Quantum circuit learning,” Physical Review A, vol. 98, no. 3, p. 032309, 2018.
- M. Schuld, A. Bocharov, K. M. Svore, and N. Wiebe, “Circuit-centric quantum classifiers,” Physical Review A, vol. 101, no. 3, p. 032308, 2020.
- M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio et al., “Variational quantum algorithms,” Nature Reviews Physics, vol. 3, no. 9, pp. 625–644, 2021.
- V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, S. Ahmed, V. Ajith, M. S. Alam, G. Alonso-Linaje, B. AkashNarayanan, A. Asadi et al., “Pennylane: Automatic differentiation of hybrid quantum-classical computations,” arXiv preprint arXiv:1811.04968, 2018.
- D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR, vol. abs/1412.6980, 2014.
- P. Afshar, S. Heidarian, N. Enshaei, F. Naderkhani, M. J. Rafiee, A. Oikonomou, F. B. Fard, K. Samimi, K. N. Plataniotis, and A. Mohammadi, “COVID-CT-MD, COVID-19 computed tomography scan dataset applicable in machine learning and deep learning,” Scientific Data, vol. 8, no. 1, p. 121, 2021. [Online]. Available: https://doi.org/10.1038/s41597-021-00900-3
- A. Chattopadhyay, A. Sarkar, P. Howlader, and V. N. Balasubramanian, “Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks,” 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 839–847, 2017.
- J. Yang, R. Shi, D. Wei, Z. Liu, L. Zhao, B. Ke, H. Pfister, and B. Ni, “Medmnist v2-a large-scale lightweight benchmark for 2d and 3d biomedical image classification,” Scientific Data, vol. 10, no. 1, p. 41, 2023.