Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Multi-fidelity No-U-Turn Sampling (2310.02703v1)

Published 4 Oct 2023 in math.NA, cs.NA, math.ST, and stat.TH

Abstract: Markov Chain Monte Carlo (MCMC) methods often take many iterations to converge for highly correlated or high-dimensional target density functions. Methods such as Hamiltonian Monte Carlo (HMC) or No-U-Turn Sampling (NUTS) use the first-order derivative of the density function to tackle the aforementioned issues. However, the calculation of the derivative represents a bottleneck for computationally expensive models. We propose to first build a multi-fidelity Gaussian Process (GP) surrogate. The building block of the multi-fidelity surrogate is a hierarchy of models of decreasing approximation error and increasing computational cost. Then the generated multi-fidelity surrogate is used to approximate the derivative. The majority of the computation is assigned to the cheap models thereby reducing the overall computational cost. The derivative of the multi-fidelity method is used to explore the target density function and generate proposals. We select or reject the proposals using the Metropolis Hasting criterion using the highest fidelity model which ensures that the proposed method is ergodic with respect to the highest fidelity density function. We apply the proposed method to three test cases including some well-known benchmarks to compare it with existing methods and show that multi-fidelity No-U-turn sampling outperforms other methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.