Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 134 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multi-fidelity No-U-Turn Sampling (2310.02703v1)

Published 4 Oct 2023 in math.NA, cs.NA, math.ST, and stat.TH

Abstract: Markov Chain Monte Carlo (MCMC) methods often take many iterations to converge for highly correlated or high-dimensional target density functions. Methods such as Hamiltonian Monte Carlo (HMC) or No-U-Turn Sampling (NUTS) use the first-order derivative of the density function to tackle the aforementioned issues. However, the calculation of the derivative represents a bottleneck for computationally expensive models. We propose to first build a multi-fidelity Gaussian Process (GP) surrogate. The building block of the multi-fidelity surrogate is a hierarchy of models of decreasing approximation error and increasing computational cost. Then the generated multi-fidelity surrogate is used to approximate the derivative. The majority of the computation is assigned to the cheap models thereby reducing the overall computational cost. The derivative of the multi-fidelity method is used to explore the target density function and generate proposals. We select or reject the proposals using the Metropolis Hasting criterion using the highest fidelity model which ensures that the proposed method is ergodic with respect to the highest fidelity density function. We apply the proposed method to three test cases including some well-known benchmarks to compare it with existing methods and show that multi-fidelity No-U-turn sampling outperforms other methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube