Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

ViT-ReciproCAM: Gradient and Attention-Free Visual Explanations for Vision Transformer (2310.02588v1)

Published 4 Oct 2023 in cs.CV and cs.LG

Abstract: This paper presents a novel approach to address the challenges of understanding the prediction process and debugging prediction errors in Vision Transformers (ViT), which have demonstrated superior performance in various computer vision tasks such as image classification and object detection. While several visual explainability techniques, such as CAM, Grad-CAM, Score-CAM, and Recipro-CAM, have been extensively researched for Convolutional Neural Networks (CNNs), limited research has been conducted on ViT. Current state-of-the-art solutions for ViT rely on class agnostic Attention-Rollout and Relevance techniques. In this work, we propose a new gradient-free visual explanation method for ViT, called ViT-ReciproCAM, which does not require attention matrix and gradient information. ViT-ReciproCAM utilizes token masking and generated new layer outputs from the target layer's input to exploit the correlation between activated tokens and network predictions for target classes. Our proposed method outperforms the state-of-the-art Relevance method in the Average Drop-Coherence-Complexity (ADCC) metric by $4.58\%$ to $5.80\%$ and generates more localized saliency maps. Our experiments demonstrate the effectiveness of ViT-ReciproCAM and showcase its potential for understanding and debugging ViT models. Our proposed method provides an efficient and easy-to-implement alternative for generating visual explanations, without requiring attention and gradient information, which can be beneficial for various applications in the field of computer vision.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.