Emergent Mind

Abstract

Although large-scale labeled data are essential for deep convolutional neural networks (ConvNets) to learn high-level semantic visual representations, it is time-consuming and impractical to collect and annotate large-scale datasets. A simple and efficient unsupervised representation learning method named ScaleNet based on multi-scale images is proposed in this study to enhance the performance of ConvNets when limited information is available. The input images are first resized to a smaller size and fed to the ConvNet to recognize the rotation degree. Next, the ConvNet learns the rotation-prediction task for the original size images based on the parameters transferred from the previous model. The CIFAR-10 and ImageNet datasets are examined on different architectures such as AlexNet and ResNet50 in this study. The current study demonstrates that specific image features, such as Harris corner information, play a critical role in the efficiency of the rotation-prediction task. The ScaleNet supersedes the RotNet by ~7% in the limited CIFAR-10 dataset. The transferred parameters from a ScaleNet model with limited data improve the ImageNet Classification task by about 6% compared to the RotNet model. This study shows the capability of the ScaleNet method to improve other cutting-edge models such as SimCLR by learning effective features for classification tasks.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.