Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

CLIP Is Also a Good Teacher: A New Learning Framework for Inductive Zero-shot Semantic Segmentation (2310.02296v2)

Published 3 Oct 2023 in cs.CV

Abstract: Generalized Zero-shot Semantic Segmentation aims to segment both seen and unseen categories only under the supervision of the seen ones. To tackle this, existing methods adopt the large-scale Vision LLMs (VLMs) which obtain outstanding zero-shot performance. However, as the VLMs are designed for classification tasks, directly adapting the VLMs may lead to sub-optimal performance. Consequently, we propose CLIP-ZSS (Zero-shot Semantic Segmentation), a simple but effective training framework that enables any image encoder designed for closed-set segmentation applied in zero-shot and open-vocabulary tasks in testing without combining with VLMs or inserting new modules. CLIP-ZSS consists of two key modules: Global Learning Module (GLM) and Pixel Learning Module (PLM). GLM is proposed to probe the knowledge from the CLIP visual encoder by pulling the CLS token and the dense features from the image encoder of the same image and pushing others apart. Moreover, to enhance the ability to discriminate unseen categories, PLM consisting of pseudo labels and weight generation is designed. To generate semantically discriminated pseudo labels, a multi-scale K-Means with mask fusion working on the dense tokens is proposed. In pseudo weight generation, a synthesizer generating pseudo semantic features for the unannotated area is introduced. Experiments on three benchmarks show large performance gains compared with SOTA methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)
Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube