Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

aSAGA: Automatic Sleep Analysis with Gray Areas (2310.02032v1)

Published 3 Oct 2023 in cs.LG and cs.HC

Abstract: State-of-the-art automatic sleep staging methods have already demonstrated comparable reliability and superior time efficiency to manual sleep staging. However, fully automatic black-box solutions are difficult to adapt into clinical workflow and the interaction between explainable automatic methods and the work of sleep technologists remains underexplored and inadequately conceptualized. Thus, we propose a human-in-the-loop concept for sleep analysis, presenting an automatic sleep staging model (aSAGA), that performs effectively with both clinical polysomnographic recordings and home sleep studies. To validate the model, extensive testing was conducted, employing a preclinical validation approach with three retrospective datasets; open-access, clinical, and research-driven. Furthermore, we validate the utilization of uncertainty mapping to identify ambiguous regions, conceptualized as gray areas, in automatic sleep analysis that warrants manual re-evaluation. The results demonstrate that the automatic sleep analysis achieved a comparable level of agreement with manual analysis across different sleep recording types. Moreover, validation of the gray area concept revealed its potential to enhance sleep staging accuracy and identify areas in the recordings where sleep technologists struggle to reach a consensus. In conclusion, this study introduces and validates a concept from explainable artificial intelligence into sleep medicine and provides the basis for integrating human-in-the-loop automatic sleep staging into clinical workflows, aiming to reduce black-box criticism and the burden associated with manual sleep staging.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.